HISAKI Level2 data
IDL sample code to read & plot

F. Tsuchiya (Tohoku-U)
SAKURA meeting @ IWF Austria
Oct. 28, 2016
One of goals for the SAKURA project

• Comparison of radio data with HISAKI
 – Io-DAM vs. Io plasma torus density change (due to & Io’s volcanic activity)
 – Non-Io-DAM vs. Aurora & Io’s volcanic activity
 – HOM vs. Aurora & Io’s volcanic activity

• Radio Data
 – NDA, LWA, IITATE, ...
 – WIND, STEREO, ...
HISAKI & HOM (WIND/WAVES) (Misawa et al. 2016)

HOM activity increased from DOY40, consistent with aurora activity.

Example (2)

HISAKI
S+ brightness (765A)

WIND
HOM S3 dependence

WIND
HOM intensity

HISAKI
Aurora intensity

Solar wind dynamic pressure
Model (Tao et al. 2005)
Example (1)

Alfven velocity

\[V_A = \frac{B}{\sqrt{\mu_0 mn}} \propto \frac{1}{\sqrt{n}} \]

- Timing of main arc (decrease)
- Repetition freq. of arcs (decrease)

Due to increase of Lead angle?

Ion composition
Increase in S+ & O+ from DOY20
Peak ~DOY50

Electron density
Increase from 1500/cc to 2500/cc

Hot electron fraction
(Th is assumed to be a few 100eV)
Increase from DOY45

Thermal electron temperature [eV]
Increase from DOY60

Plasma parameter of Io plasma torus (7RJ) in the spring of 2015 (Kagitani et al. 2016)
Sodium nebula: Neutral accelerated from IPT

Io's volcanoes → NaCl gas → Io's atmosphere

Nebula → Na*, Cl* → Io ionosphere → Io plasma torus

Volcanism (IR) v.s. Sodium brightness (Vis)

[Sodium Nebula vs. IR][Wilson et al. 2002]

Surface IR (3.5um)

[Mendillo et al. 2004]
Irregular powerful infrared emission was detected in 2011. (Yoneda et al. 2014)

The activity in the Hisaki life is relatively low.

Continuous monitoring will be Executed by remote observations.
HISAKI Data analysis sample

• Doc and IDL sample code are temporally uploaded below:
 – http://pparc.gp.tohoku.ac.jp/~tsuchiya/HISAKI/
 Document: HISAKI_L2_Basic_v1_2.pptx
 Sample code: idl_sample_v1_2.zip
 Spice kernels: spice_kernels.zip

 – HISAKI L2 data
 https://www.darts.isas.jaxa.jp/stp/hisaki/
Possible use case: Jovian DAM during Volcanic activity detected by Hisaki

Io plasma torus (SII\&SIII):
Increase from DOY20 to DOY120 due to volcanic activity

Aurora:
Increase from DOY60 to DOY100

Jovian DAM:
??? → Analysis of litate HF data
What you can do with the sample code

• Doc and sample codes include
 – How to set up IDL and SPICE
 – How to read and plot spectrum of Io plasma torus
 – Calibration (photon count rate to intensity in Rayleigh)
 – How get light curve of a specific emission line/band (e.g. S+, S2+, H2 aurora, ...)
 – How to find Io phase angle and Jovian longitude (CML) with SPICE
 – How to identify observation mode (on-Jupiter or off-Jupiter)
 – How to remove contamination from radiation belt
Sky = foreground geo-coronal emission (H, O, O+) and interstellar emission (H, He)
• Spectrum of Io plasma torus (at y=140[arcsec])

IDL> ret = min(abs(cal_y[512,*]-140.0), i_trg)
IDL> plot,cal_x[*],zarr[*,i_trg],yrange=[-5,100], xtitle='Wavelength[A]', ytitle='[Rayleigh/Angstrom]', xstyle=1, ystyle=1, /nodata
IDL> oplot,cal_x[*],zarr_sky[*,i_trg], color=cgcolor('red')
IDL> oplot,cal_x[*],zarr[*,i_trg], color=cgcolor('blue')

Sample code to show Result 3-5:
x_exc_sample1.pro
Blue: IPT short wavelength
Red: IPT long wavelength

Jupiter northern UV aurora

Geocorona
- Red: HI1216
- Yellow: HeI584
- Blue: OI1304

Radiation belt contamination

Attitude flags
- Red: Sub mode
- Yellow: Sub mode status
- Blue: Cal flag

HISAKI Local time
Brightness (total count in ROIs for 1-min) of Io plasma torus (blue: dawn, red: dusk) (65-78nm).

Io phase angle
(Io’s orbital period = 42h)

Radiation belt contamination

CAL flag
Other things

• Solar radio data from IPRT
 (Iitate planetary radio telescope)